Mode region detection using improved Competitive Hebbian Learning for unsupervised clustering

نویسندگان

  • Meriem Timouyas
  • Ahmed Hammouch
  • Souad Eddarouich
چکیده

The goal of this paper is to propose an improved competitive Hebbian learning for mode detection using a new activation function, to overcome its sensitivity to local irregularities in pattern distribution. This method is involved with an unsupervised clustering approach divided into four processing stages. It begins by the estimation of the probability density function, followed by a competitive training neural network with Mahalanobis distance as a metric of resemblance. This stage allows detecting the local maxima of the pdf. Then, we use the new method to analyse the connectivity between the detected maxima of the pdf upon Mahalanobis distance. The so detected groups of Maxima are then used for the classification process. The proposed approach has proven, under a number of data samples, its automaticity and efficiency in the mode region detection through optimal data topology preservation, without over or misclassification, and without using any threshold or requiring any prior information neither on the number of classes nor on the structure of their distributions in the dataset. Keywords—Probability Density Function; Competitive Neural Networks; Mahalanobis Distance; Competitive Hebbian Learning; Topology preservation; Threshold

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved competitive learning neural networks for network intrusion and fraud detection

In this research, we propose two new clustering algorithms, the improved competitive learning network (ICLN) and the supervised improved competitive learning network (SICLN), for fraud detection and network intrusion detection. The ICLN is an unsupervised clustering algorithm, which applies new rules to the standard competitive learning neural network (SCLN). The network neurons in the ICLN are...

متن کامل

Competitive Learning: What are the Circuit Limitations?

This paper examines issues relating to analog CMOS circuit implementation of the soft competitive neural learning algorithm. Simulations of a proposed implementation have been conducted based on hardware models constructed from actual measurements of 1.2 μ m CMOS analog components, primarily (nonlinear) Gilbert multipliers and associated circuits. We have used these same components in the past ...

متن کامل

NGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map

Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...

متن کامل

Competitive Anti-Hebbian Learning of Invariants

Although the detection of invariant structure in a given set of input patterns is vital to many recognition tasks, connectionist learning rules tend to focus on directions of high variance (principal components). The prediction paradigm is often used to reconcile this dichotomy; here we suggest a more direct approach to invariant learning based on an anti-Hebbian learning rule. An unsupervised ...

متن کامل

Spiking Neurons by Sparse Temporal Coding and Multilayer Rbf Networks

We demonstrate that spiking neural networks encoding information in the timing of single spikes are capable of computing and learning clusters from realistic data. We show how a spiking neural network based on spike-time coding and Hebbian learning can successfully perform unsupervised clustering on real-world data, and we demonstrate how temporal synchrony in a multi-layer network can induce h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017